North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase.

نویسندگان

  • Yan Wu
  • Xiangru Lu
  • Fu-Li Xiang
  • Edmund M K Lui
  • Qingping Feng
چکیده

Emerging evidence suggests ginseng has therapeutic potential in cardiovascular disease. The aim of this study was to investigate the role of endothelial nitric oxide synthase (eNOS) in the cardioprotective effects of ginseng during myocardial ischemia and reperfusion (I/R). Treatment with ginseng extract significantly increased Akt phosphorylation and eNOS protein levels in cultured neonatal cardiomyocytes. Upregulation of eNOS was blocked by LY294002, a PI3-kinase inhibitor, suggesting a PI3-kinase/Akt-dependent mechanism. To simulate I/R, cultured neonatal cardiomyocytes from eNOS(-/-) and wild-type (WT) mice were subjected to anoxia and reoxygenation (A/R). Ginseng treatment inhibited A/R-induced apoptosis in WT, but not in either eNOS(-/-) cardiomyocytes or WT cardiomyocytes treated with LY294002. To further study the cardioprotective effects of ginseng in vivo, WT and eNOS(-/-) mice were pretreated with ginseng extract (50mg/kg/day, oral gavage) for 7 days before they were subjected to myocardial I/R. Treatment with ginseng significantly increased Akt phosphorylation and eNOS protein levels in the myocardium. Furthermore, ginseng-induced myocardial eNOS expression was inhibited by LY294002. Strikingly, ginseng treatment significantly decreased infarct size and myocardial apoptosis following I/R in WT mice, but not in either eNOS(-/-) mice or WT mice treated with LY294002. We conclude that ginseng treatment protects the heart from I/R injury via upregulation of eNOS expression. Our study suggests that ginseng may serve as a potential therapeutic agent to limit myocardial I/R injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat

Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...

متن کامل

Hydroalcoholic Extract of Anchusa Italica Protects Global Cerebral Ischemia-Reperfusion Injury Via a Nitrergic Mechanism

Introduction: In stroke models, Inducible Nitric Oxide Synthase (iNOS) expression initiates cellular toxicity due to excessive Nitric Oxide (NO) generation. Anchusa italica is a medicinal herb with anti-inflammatory, antioxidant and neuroprotective properties. This study evaluated the antioxidant activity and NOS mRNA expression of the Hydroalcoholic Extract Of Anchusa Italica (HEAI) in an expe...

متن کامل

Effect of crocin on nitric oxide synthase expression in post-ischemic isolated rat heart

Objective: Oxidative stress damages cells and brings about the pathogenesis of ischemia/reperfusion injury. This study was carried out to investigate the preconditioning and cardio protective potential effects of crocin and vitamin E by the eNOS and iNOS express gene in ischemia/reperfusion in rats. Material & Methods: Male rats were divided into seven groups, namely: sham, control group and ex...

متن کامل

The Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat

Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...

متن کامل

Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress.

Increased production of reactive oxygen and nitrogen species following cerebral ischemia-reperfusion is a major cause for neuronal injury. In hypercholesterolemic apolipoprotein E knockout (ApoE-KO) mice, 2h of middle cerebral artery (MCA) occlusion followed by 22h of reperfusion led to an enhanced expression of NADPH oxidase subunits (NOX2, NOX4 and p22phox) and isoforms of nitric oxide syntha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pharmacological research

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 2011